

Czech Metrology Institute Okružní 31, 638 00 Brno, Czech Republic

phone: +420 545 555 111, fax: +420 545 222 728, www.cmi.cz

Supervised by:

Section of Fundamental Metrology, Certification Body for Reference Materials (CORM) Hvožďanská 2053/3, 148 00 Praha 4, tel. +420 271 192 111, fax. +420 271 192 266

CERTIFICATE

0217-CM-2001-14

CERTIFIED REFERENCE MATERIALS CZ 2001

Low alloy steel for solid sample spectrometry, CRM set 180 - 189 A, B, C, D, E

First issue:	December 15, 2001	page 1 / 4
Valid till:	December 1, 2015	
Recertified on:	January 1, 2014	
Valid till:	January 1, 2020	
Prepared by:	vacuum melting and casting, followed and forging the ingots to the bars of the subdividing to the discs 13 or 25 mm h ten or individually.	by electro-slag remelting and rolling e ultimate diameter of 44 mm, and high. The CRMs can be used in sets of
	The set covers the typical concentratio impurities of low alloy steels. The com balanced to avoid excessive matrix infl above ranges. Consequently the CRMs particular steel grade.	n ranges of the alloying elements and position of the individual CRMs was luence while sufficiently covering the s may not correspond with any
Intended:	for calibration and validation of metho from a plane of solid sample: Atomic I glow-discharge or laser excitation and	ds of low alloy steel spectrometry Emission Spectrometry with spark, X-ray Fluorescence Spectrometry.
Production:	testing and characterization were c methodical procedure CORM ČMI 0 the ISO Guides 34, 35.	carried out in accordance with the 17-MP-C001 and in compliance with
	The producer shall ensure due condi shall monitor the CRM parameters a entire validity period.	tions of storage and distribution and and feed-back from users during the
Producer:	ALS Czech Republic, s.r.o. Na Harfe 3 Republic, <u>www.alsglobal.cz</u>	336/9, 190 00 Praha 9, Czech
Responsible person:	Vladimír Nováček	
CORM deputy head:	sotrologicky	Head of CORM:
bear	Cesky Cesky	Secure
Ing. Jan Beránek	2	RNDr. Pavel Klenovský

This Certificate may only be reproduced in full, except with the prior written permission by CMI.

	0	Min	8	4	\$	C	Z	Mo	V	M		5
180 8	0.003	0.047	0.001	0.004	0.0038	0.013	0.018	0.001	00000	0.0001	0	900
		0.002	100.0	100 0	0.0003	100.0	1000	0.001	1000		0	100
181 8	0.240	0.988	0.445	0.042	0.008	0.669	0.737	S6E.0	102.0	0.188	0	560
	0.008	0.022	£10:0	0.002	0.001	110.0	0011	600.0	9000	0.005	0	03
181 C	0.243	0.988	0.443	0.042	0.008	0.666	0.739	0394	0.307	0.187	0.0	366
	60000	0.022	0.013	0.002	0001	110.0	0.011	0.009	0.006	0.005	0.0	X03
181 19	0.231	0.980	0.437	0.040	0000	0.661	0.726	0389	0.303	0.187	0.0	66
	0.008	0.022	0013	0.002	0001	110.0	0.011	0.009	0.006	0000	0	S
0 6 3 8	1.39	0370	0.126	0.008	0,006	0.122	2.82	0.011	0.027	0.016	0.2	66
0 701	0.02	0.008	0.008	100:0	100.0	0.002	0 03	0.001	0.002	0.004	00	10
187 6	1.36	0.363	0.111	0.009	80070	0.123	2.80	0.012	0.028	0.018	0.2	76
1 401	0.02	0.008	0008	0.001	0001	0.002	60.03	0.001	0.002	0004	0.0	10
1810	0.049	1.76	1.03	0.009	0.012	0.205	1.10	0.036	0.004	0353	0.5	15
-	0.003	0.03	0.02	100'0	1000	0,010	0.02	0.003	0.002	0.008	0.0	4
1810	0.048	1.75	1.02	0.009	0.012	0.204	1.09	0.036	0.004	0.354	0.5	E
1 201	0.003	0.02	0.02	100'0	0001	0.010	0.02	0.003	0.002	0.008	0.0	8
3 2 31	0.049	1.76	1.03	0.009	0.013	0.205	1.10	0.036	0.004	0.351	0.5	15
	0.003	0.02	0.02	0.001	100:0	0.010	0.02	0.003	0.002	0.008	0.0	13
184 A	1.013	2.23	0.348	0.028	10.0	2.33	0.250	0.016	0.017	100 0	0.0	80
	0.012	0 03	0 008	0.002		0.02	0.008	0.004	0.003		0.0	8
125 4	0.566	0.715	0.230	0.024	0.02	0.032	3.84	0.123	0.178	0 001	0.1	61
VCBI	600.0	0.004	0.005	100.0		0.003	0.04	0.006	0.006		0.0	63
1865	0.394	1121	1.41	0.013	0000	151	1.58	0.255	0.021	0.054	0.2	12
1001	0.007	0.016	0.02	100.0	0001	0.02	0.02	0.008	0.002	0.004	0.0	02
186.0	0.392	1.312	1.41	0.013	0000	1.51	1.58	0.254	0.021	0.054	0.2	26
1001	0.007	0.016	0.02	0.001	0.001	0.02	0.02	0.008	0.002	0.004	0.0	8
A 781	0.119	0.525	0.567	0.035	0.018	3.51	0.085	0.565	0.558	19'0	0.0	36
	0.004	2000	0.023	0.002	100.0	0.04	0.004	0.008	0.008	0.02	0.0	63
7876	0.118	0.530	0.588	0.035	0.013	3.50	0.085	0.563	0.559	0.67	0.0	Ŧ
	0.004	0.007	0.023	0.002	0.002	0.04	0.004	0.008	0.008	0.02	0.0	6
187 D	0.119	0.529	0.576	0.035	0.015	3.51	0.085	0.566	0.560	0.67	0.0	35
	0.004	0.007	0.023	0 002	0.002	0.04	0.004	0.008	0.008	0.02	0.0	6
188 4	0.332	0.169	0.775	0.006	0.033	5.11	0.445	1.28	0.802	0.091	0.0	15
Voor	0.010	0004	0.016	100.0	0.002	0.05	0.008	0.02	0.008	0 005	0.0	8
4 80 Y	0.175	0.262	0.286	0.032	0.051	1.065	5.34	0.837	0.054	1.30	0.0	8
V COT	0.006	0000	0 001	0.002	0.002	0.014	0.02	6000	0000	0 02	00	8

Certificate

0217-CM-2001-14

page 2/4

This Certificate may only be reproduced in full, except with the prior written permission by CMI.

	F	Zr	Co	8	Nb	Ta	Sa	As	8	44	8	Z
00	100	0.000	0.003	0.0000	10000	0 0000	0.0005	0.001	0.004	0.0002	0 0000	0 002
e	155	0.001	0.050	0.0076	0.062	0.042	0.122	0.029	2100	\$00070		0 00
0	800	100.0	0.003	0.0005	0.003	0 003	0 004	0.001	1000	0.0002		
0	159	10070	150'0	0.0076	0.063	0.042	0.122	0.029	0.017	0.0005		0.005
0	800	1000	0 003	00000	0003	0.003	0.005	100.0	0.001	0.0002		
0	SI	10070	0.050	110000	09070	0.039	0.117	0.028	0.017	0,0005		0 005
0	800	0.001	0.003	0.0005	0.003	0.003	0.004	100'0	100.0	0.0002		
0	004	0.001	0.171	0.0003	100'0	00070	0.004	0.005	1000	0 000		0.004
0	007	100.0	0.004	1000.0	100.0	100 0	100 0	100.0	1000			0.000
0	.002	100'0	0.171	0,0003	100'0	0.001	0.004	0.005	0.001	0001		0.004
0	200	1000	0.004	10000	1000		1000	100 0	0.001			0.000
0	003	18070	0.120	00000	0000	0.000	0.053	0.005	0.001	0000	0.000.0	0.0040
0	100	0.007	0.003	10000	100'0		0.003	100.0	0.001		10000	0.000
0	603	1100	0.119	\$00.005	9000	0 000	150'0	0,005	0'001	0000	0.0000	0.003
0	100	0.004	0.003	10000	1000		0.002	100.0	0.001		00001	0.000
0	603	08070	0.119	200000	90000	0 000	620.0	0.005	0.001	0000	0.000.0	0.004
0	100	0.007	0.003	10000	1000		0.003	100.0	0.001		10000	0.000
0	010	0 002	0.007	0.0005	0.013	00000	0.008	0.006	0.002	0000		0.010
0	200		0.002	0.0002	100.0	100'0	100.0	100.0	1000			0.000
0	022	0.002	0.032	0.0116	0.20	0.085	0.003	0.022	1100	0.002		0,005
0	100	0.001	0.001	0 0014	10.0	0.005	100.0	0.002	100/0	100'0		0.000
0	.047	0.002	0.006	60000	0.004	0.008	810'0	0.007	0.002	0000		0.005
0	004		0.002	10000	1000	0.001	100.0	100.0	0.001			
0	.047	0.002	0.006	60000	1000	0.008	810.0	0.007	0.002	0000		0000
0	8		0.002	10000	1000	100.0	1000	100.0	100'0			
0	1807	0.013	0.071	0.0006	0.028	0.015	0.013	0.001	0.023	0.003	0.003	0.012
0	000	100 0	0.003	0.0002	E00.0	0.002	100.0		0.002	0.001	0.001	0000
0	110	110'0	0.071	900070	0.028	0.016	0.014	0.007	0.023	0.003	0.003	0.015
0	500	1000	0.003	0.0002	0.003	0.002	100'0		0.002	1000	100.0	0.002
0	960	0.012	0.071	0.0006	0.028	0.016	610.0	0 001	0.022	0.003	0.003	0.012
0	005	0.002	0 003	0.0002	6000	0.002	100.0		0.002	1000	100.0	00000
•	1034	0.052	0.006	0.0047	0.122	0.022	0.005	0.005	900'0	0.001		0,007
0	003	0.003	0.001	0.0004	0.003	0.002	100.0		0.002	0.001		0.000
•	326	0.005	0.007	0.0030	0.017	0.005	0.029	0.080	0.003	0.002		000
0	010	0000	A MM	0,000	NNN		A LOUD	0.003		0001		

Certificate

0217-CM-2001-14

page 3 /4

Certificate	0217-CM-2001-14	page 4 / 4
Homogeneity:	of the certified constituents was tested by A within-sample homogeneity (random, radia homogeneity (axial trend along the success uncertainty contribution, when found signif- ultimate uncertainty of the certified value.	AES with spark excitation. Both I trend) and between-sample ive bars) were evaluated. Their ficant, was combined to the
Stability:	the CRM materials are stable by nature of t	heir matrix.
Storaget	in a dry and non-corrosive environment is r	recommended.
User instructions:	the working surface of the CRM must be p same way as analysed samples, in accord manual. When determining low contents of taken to avoid contamination of the analytical s abrasives. Overheating of the analytical s avoided.	prepared before the analysis in the ance with the particular analyser of C, Si, Al special care must be alytical surface with residues of urface during grinding should be
	A single analysis area of at least 4 mm i sample intake.	n diameter defines the minimum
	There are no safety hazards in the storage a	nd proper use of CRM.
Characterization:	by interlaboratory experiment involving s was made in compliance with ISO Guide 3.	elected competent laboratories 5.
Traceability:	of the certified values was established to matching CRM of other producers (NIST, I	the certified values of matrix- BS and others)
Methods:	of various analytical techniques were used spectroscopy, combustion, thermoevolution	including solid sample a and solution analysis.
Participating laboratories:	establishing the values of batches C, D, E treference batches A:	raceable to the certified values of
	Enviform, a.s., Třinec, Czech Republic ŽĎAS, a.s., Žďár nad Sázavou, Czech Rep ZPS – Slévárna, a.s., Zlín, Malenovice, Cz	ublic zech Republic
Certified values:	of the consecutive batches C, D, E were values of the respective reference batches 2001-01), which were based on an in involving 27 laboratories in 8 countries. three laboratories, with uncertainty contr compared to the uncertainty of the certified	made traceable to the certified A (cf. Certificate No: 017-CM- nternational collaborative study Traceability was established by ibution (repeatability) negligible values.
	The validity term of the former batches A assessment of the Czech Metrology Inst unchanged. The certified values are tabula digit as their uncertainty, shown below in re	, B was prolonged by the expert itute, with their original values ted in bold, rounded to the same egular
Non-certified values:	tabulated without uncertainty statements of certification. They are intended for the mat be used for calibration.	lid not meet all requirements for rix information only and may not
Uncertainty:	Expanded uncertainty U with a covera confidence interval.	ge factor of $k=2$ at the 95%
	End of the Certificate.	Ceský metrologicky institut úvok hurunni vistní monstogie TVODDOL – 1 1/8 01 P

This Certificate may only be reproduced in full, except with the prior written permission by CMI.

CZECH METROLOGY INSTITUTE AUTHORIZED REFERENCE MATERIALS CERTIFYING BODY, PRAGUE

V Botanice 4, CZ-150 72 Praha 5, tel: +420 2 5732 4096, fax: +420 2 5732 4982

CERTIFICATE

SET OF CERTIFIED REFERENCE MATERIALS CZ 2002 LOW ALLOY CAST IRON FOR SOLID SAMPLE SPECTROMETRY CRM 241 - 249 A-D

Designed for the calibration and validation of methods of spectrometrical analysis on the planes of solid samples with an analyzed area of at least 4 mm in diameter: Atomic Emission Spectrometry with spark, glow discharge or laser excitation and X-ray Fluorescence Spectrometry.

The CRMs can be used as a set of nine or as individual samples.

Manufacture and Technical Parameters. The samples were chill-cast white on a massive copper block with controlled speed at a controlled temperature of the molten metal.

The samples are truncated pyramids with a base analytical surface (38x38 mm), a minimum total height of 20 mm and a side ledge 11-13 mm high. The samples can be used till 1 mm of the ledge height remains. The certified portion of a sample thus extends 10-12 mm from the original analytical surface.

The samples are electro-spark marked on surfaces opposite to the analytical surfaces.

Shrinkage cavities and porosity which may appear in the uncertified portions of the samples due to the applied technology and the properties of the material do not affect the analytical performance of the certified portions.

Homogeneity was tested by Atomic Emission Spectrometry with an analytical area approximately 4 mm in diameter.

Tested were the random homogeneity and the trend homogeneity along the height of the certified portion and the trend homogeneity of the casting sequence. The latter test was supported by Combustion - IR Molecular Absorption Spectrometry and Thermoevolution.

Producer

ČKD Technical Laboratories, Na Harfé 9, CZ - 190 02 Praha, Czech Republic Fax: + 420 2 66036578, E-mail: techlab@anet.cz Project Manager: Miroslav Gorný

Quality Management System ISO 9001 is in force with the producer. Production, testing and certification were carried out in compliance with the ISO-REMCO Guide 34 (2000).

Certificate No.: 017/CR/045

Leung

Pavel Klenovský CMI Director

Date of Issue: 21.3. 2000

Valid until: 21.3.2015

CERTIFICATION

Principle and Traceability. Certification based on an interlaboratory experiment performed by various independent analytical methods was carried out in compliance with the ISO-REMCO Guide 35 (1989).

The results were traced to the former 241 trough 249 CRM set and standard primary substances. The methods were validated by matrix-matching CRMs.

Methods. Atomic Emission Spectrometry with spark and glow discharge excitation and X-ray Fluorescence Spectrometry were applied on a plane of the solid sample. Crushed certified portions of the samples were analyzed by Combustion - IR Molecular Absorption Spectrometry, Thermoevolution, Instrumental Neutron Activation Analysis and by solution methods which comprised Atomic Emission Spectrometry with Inductively Coupled Plasma excitation directly and with hydrides generation, Flame and Electro-Thermical Atomization Atomic Absorption Spectrometry, Molecular Absorption Spectrometry (Spectrophotometry) and Gravimetry.

Participating laboratories:

Analytical Laboratories Plzeň, Plzeň	Škoda, Plzeň
ARL, Ecublens, Switzerland	Škoda Auto, Mladá Boleslav
ČKD Technical Laboratories, Praha	Třinecké železárny, Třinec
LECO Instrumente Plzeň, Plzeň	Vítkovice, Ostrava
Nová huť, Ostrava	ŽĎAS, Žďár nad Sázavou
Nuclear Physics Institute, Řež u Prahy	Železárny a drátovny Bohumín, Bohumín
Pramet Tools, Šumperk	Železárny Hrádek, Hrádek u Rokycan

Evaluation. First the values of laboratory means were assessed technically to justify the deletion of possible outliers. Next the normal distribution of the laboratory means in each set was verified and the unrounded arithmetic averages and their standard deviations calculated.

Certified values are the averages of at least six accepted laboratory means the normal distributions of which were not rejected, rounded identically as their stated uncertainties.

Uncertainty was estimated with respect to ISO Guide to the Expression of Uncertainty in Measurement (1993) and Document EURACHEM, 1995 - Quantifying Uncertainty in Analytical Measurement as an expanded combined uncertainty. It is expressed as the \pm half- width interval except for certified zero values for which only the + halfwidth interval applies. The sources of the estimates of uncertainty were the standard deviation of an average of the laboratory means and a contribution of the combined inhomogeneities when found to be statistically significant. A coverage factor of 2,3 was applied.

The uncertainty statement is given by two significant figures at most and holds only for analytical areas 4 mm or more in diameter.

Uncertified values are given when less than six accepted laboratory means were avalaible and serve only as supplementary matrix information. They must not be used for calibration and validation.

Stability and storage. The CRM materials and certified constituents are stable over the entire period of validity. The samples must be stored in a non-corrosive environment.

Users instructions. The analytical surfaces of the CRMs must be prepared prior to analysis in the same way as the analyzed samples in agreement with the Instrument Operation Instructions.

SET OF LOW ALLOY CAST - IRON SPECTROMETRIC CERTIFIED REFERENCE MATERIALS CZ 2002

NO % m/m C Mn Si P S Ni Cr Cu Mo V Ti AI Ce B Nº Mg 1,84 0,060 3,15 0,007 0,123 0,021 0.683 0.011 0.61 0.080 0.001 0.003 0.000 0.000 value 0,001 241B 241B 0.005 U_e 0.02 0.002 0.03 0.001 0.001 0,001 0.01 0.005 0.002 0.001 0.001 0.0005 0.0006 2.06 0.189 2,81 0.044 0.022 0.031 0.040 1,21 0,042 0.028 0,46 0,28 0,000 0,00 0,005 value 242B 242B Ue 0.03 0.02 0.004 0.001 0.002 0.001 0.001 0.002 0.01 0.01 0.002 0.0005 0.001 0.01 value 1,84 0.050 3.06 0.039 0,036 0.039 0.029 0.055 1,13 0,37 0,19 0,036 0.000 0.00 0,00B 242A 242A 0.002 Uc 0.02 0.03 0,001 0.002 0.001 0,001 0,002 0,01 0.01 0.01 0.003 0.0005 0.001 2,32 0.422 2,39 0.173 0.082 0.085 0,398 0,187 0,262 0.154 0.023 0.013 0.000 0.000 0.009 value 243A 243A 0.002 U. 0.007 0.02 0.005 0,002 0.03 0.002 0.005 0.004 0.005 0.002 0.002 0.0005 0.001 0.001 2,57 0,68 2,06 0,022 0,011 0.336 0,360 0,308 0,056 0,002 0.019 0,019 0,025 0,018 0.093 value 244B 244B U. 0.003 0.03 0.01 0.03 0.001 0.001 0.003 0.003 0.001 0.001 0.001 0.002 0.001 0.003 0.003 2,95 1,38 1,59 0,42 0,035 0,194 0,197 0,081 0,115 0.055 0,110 0.038 0.003 0.00 value 0.003 245B 245B 0.01 0,002 Uc 0.03 0.02 0.01 0.002 0.002 0.003 0,002 0.002 0.002 0.001 0.001 0.002 value 2,94 1,38 1,58 0,41 0,039 0,161 0,166 0,076 0,114 0,073 0,087 0,019 0,003 0,00 0,007 245A 245A 0.01 Uc 0.03 0.02 0.01 0.002 0.003 0,004 0.003 0.002 0.002 0.003 0.002 0.001 0.001 0.354 0,66 1,39 0.014 2,73 0,76 0,020 0.065 1,16 0.009 0.013 0,101 0.016 0.007 value 0,000 246B 246B U. 0.01 0.01 0.01 0.01 0.03 0.005 0.002 0.001 0.001 0.001 0.001 0.005 0.001 0.002 0.0005 value 3.09 1,05 1,20 0,098 0,0034 0,437 0.041 0,822 0.023 0,013 0,067 0.043 0,056 0,053 0,000 247B 247B 0.04 0.01 Un 0.02 0.003 0.0009 0.003 0.001 0.004 0,001 0.001 0,002 0,002 0,003 0.003 0,0005 0.265 1.82 0.050 0,0033 0,680 0.022 0,124 0.001 0.142 0.163 0.026 3,34 0.037 0.030 0.039 value 248B 248B 0,02 U. 0.003 0.02 0.001 0.0005 0.007 0.001 0.002 0.002 0.001 0.003 0.003 0.002 0.002 0.002 value 3,39 0.281 1.78 0.053 0.0035 0.688 0.052 0.132 0.001 0.162 0.133 0.028 0.048 0.036 0.038 248C 248C U. 0.02 0.002 0.02 0.001 0.0005 0.007 0.001 0.002 0.001 0.003 0.003 0.002 0.002 0.002 0.002 0,474 value 4,06 0,121 0,47 0,26 0,0078 1,16 0,102 0,013 0,019 0,046 0,105 0.040 0.021 0,016 249B 249B 0.03 U. 0.002 0.01 0.01 0,0007 0.02 0.001 0.008 0.001 0.002 0.002 0,006 0,002 0.002 0.001 0.099 0.49 0,27 0.0075 1,21 0,148 0.486 0.011 0,026 0.026 0.032 0.042 0.017 value 4.06 0.017 249C 249C 0.002 0.01 0.0007 0.02 0.005 U. 0.03 0.01 0.002 0.001 0.002 0.002 0,002 0.002 0.002 0.001 0.479 value 3,76 0,127 0.34 0.25 0.008 1,42 0.093 0.013 0.023 0.095 0,056 0.051 0.05 0.018 249D 249D 0.007 U. 0.03 0,002 0,01 0.01 0.001 0.02 0.001 0.001 0,002 0.002 0.002 0.002 0.001 4,10 0,197 0,91 0,26 0.013 1.20 0.083 0,497 0,010 0.032 0.084 0.047 0.067 0.027 0.015 value 249A 249A Un 0.02 0.03 0.003 0.01 0.001 0.02 0.002 0.005 0.001 0.003 0.003 0.003 0.003 0.003 0.002

NINE TYPES 241 - 249A, B, C, D

CERTIFICATE No.: 017/CR/045 p.2 for the certifying body:

They!

N°	% m/m	Sn	Sb	As	Pb	Bi	Zn	Se	Te	Co	w	Nb	Zr	La	N	Fe	N°
241B	value U _c	0,003	0,139 0,006	0,002	0,001	0,000 0,001	0,000 0,0005	0,00	0,000	0,004 0,001	0,001	0,003	0,000 0,0005	0,000 0,0005	0,0053 0,0004	93,2	241B
242B	value U _c	0,010 0,002	0,005	0,009	0,027	0,020 0,002	0,00	0,002	0,031	0,004	0,002	0,009	0,000	0,000	0,0092	92,6	242B
242A	value U _c	0,010 0,002	0,007 0,001	0,015 0,001	0.012	0,015	0,00	0,000	0,08	0,002 0,001	0,007	0,013	0,000	0,00		92,9	242A
243A	value U _c	0,114 0,003	0,086	0,087 0,004	0,055	0.001	0,018 0,001	0,055	0,000	0,026	0,029	0,019	0,000	0,000 0,0005	0,0037 0,0003	93,0	243A
244B	value U _c	0,179 0,003	0,004	0,040 0,001	0,002	0,000 0,0005	0,026	0,000	0,000	0,049	0,052 0,002	0,006	0,025 0,001	0,009 0,001		93,0	244B
245B	value U _c	0,076 0,002	0,052 0,002	0,006 0,001	0,020 0,002	0,009 0,001	0,00	0,029	0,017	0,007 0,001	0,020 0,002	0,029 0,001	0,004 0,001	0,00	-	92,5	245B
245A	value U _c	0,076 0,003	0,050 0,002	0,002 0,001	0,015 0.001	0,008 0,001	0,000 0,0005	0,036	0,018	0,003 0,001	0,021 0,003	0,001	0,003 0,001	0,00		92,7	245A
246B	value U _c	0,002 0,001	0,004 0,001	0,003 0,001	0.002	0,001	0,00	0,00	0,00	0,012 0,001	0,011	0,001	0,000 0,0005	0,003 0,001		92,6	246B
247B	value U _c	0,038 0,001	0,005 0,001	0,010 0,001	0,002	0,007 0,001	0,012 0,001	0,000	0,008	0,095 0,003	0,002	0,052 0,001	0,009 0,001	0,019 0,002		92,7	247B
248B	value U _c	0,017 0,001	0,017	0,018 0,001	0,013	0,002 0,001	0,009	0,005	0,002	0,014 0,001	0,001	0,005	0,013 0,001	0,009		93,1	248B
248C	value U _c	0,016 0,001	0,017	0,019	0,013 0,001	0,002 0,001	0,008 0,001	0,007	0,003	0,013	0,001 0.001	0,003	0,012	0,011 0,001		93,0	248C
249B	value U _c	0,007 0,001	0,005	0,017	0,013	0,006	0,006	0.005	0,00	0,013	0,011	0,013 0,001	0,048	0,006 0,002		92,9	249B
249C	value U _c	0,002	0,005	0,016	0,009	0,004	0,006	0,002	0,00	0,014	0,009	0,011	0,027	0,004		92,9	249C
249D	value U _c	0,004	0,004	0,018	0,025	0,006	0,004	0,003	0,002	0,011	0,01	0,035	0,039	0,023		93,0	249D
249A	value U _c	0,003 0,001	0,002	0,014	0,015	0,007	0,004	0,005	0,00	0,020	0,01	0,021	0,028	0,007		92,3	249A

bold figures with uncertainty statement

Certified values:

Uncertified values: thin figures without uncertainty statement. For information only, they must not be used for validation or calibration.

Uncertainties: Uc, expanded combined uncertainty as the ± halfwidth interval except for certified zero values for which the + interval applies.

CZECH METROLOGY INSTITUTE

CERTIFYING BODY FOR REFERENCE MATERIALS Radiová 3 102 00 Praha 10

CERTIFICATE

SET OF CERTIFIED REFERENCE MATERIALS CZ 2002 LOW ALLOY CAST IRON FOR SOLID SAMPLE SPECTROMETRY CRM 243B, 244C, 247C, 248D

Designed for the calibration and validation of methods of spectrometrical analysis on the planes of solid samples with an analyzed area of at least 4 mm in diameter: Atomic Emission Spectrometry with spark, glow discharge or laser excitation and X-ray Fluorescence Spectrometry.

The CRMs complement the other members of the set, certified on March 21st by the Certificate No. 017/CR/045. They can be used within a set of nine or as individual samples.

Manufacture and Technical Parameters. The samples were chill-cast white on a massive copper block with controlled speed at a controlled temperature of the molten metal.

The samples are truncated pyramids with a base analytical surface (38x38mm), a minimum total height of 20 mm and a side ledge from 11 to13 mm high. The samples can be used till 1 mm of the ledge height remains. The certified portion of a sample thus extends from 10 to 12 mm from the original analytical surface.

The samples are electro-spark marked on surfaces opposite to the analytical surfaces.

Shrinkage cavities and porosity which may appear in the uncertified portions of the samples due to the applied technology and the properties of the material do not affect the analytical performance of the certified portions.

Homogeneity was tested by Atomic Emission Spectrometry with an analytical area approximately 4 mm in diameter.

Tested were the random homogeneity and the trend homogeneity along the height of the certified portion and the trend homogeneity of the casting sequence. The latter test was supported by Combustion - IR Molecular Absorption Spectrometry and Thermoevolution.

Producer.

ČKD Technical Laboratories, Na Harfé 9, CZ - 190 02 Praha, Czech Republic Fax: +420 266 036 583, E-maîl: info@techlab.ez Project Manager: Miroslav Gorný

Quality Management System ISO 9001 is in force with the producer. Production, testing and certification were carried out in compliance with the ISO-REMCO Guide 34 (2000).

Certificate No.: 017-CM-2002-03 Date of issue: 17.10.2003 Valid until: 17.10.2018

Dr. Frannišek Jeline Deputy Director

SET OF LOW ALLOY CAST IRON SPECTROMETRIC CERTIFIED REFERENCE MATERIALS CZ 2002

THE SUPPLEMENT		- TYPES	243,	244,	247,	248
----------------	--	---------	------	------	------	-----

N°	% m/m	С	Mn	Si	Р	S	Ni	Cr	Cu	Мо	v	Ti	AI	Mg	Се	В	N°
243B	value	2.29	0.466	2.44	0.173	0.081	0.098	0.394	0.191	0.252	0.227	0.003	0.013	0.000	0.000	0.010	243B
2100	Uc	0.02	0.008	0.03	0.004	0.003	0.002	0.003	0.002	0.003	0.003	0.001	0.002	0.0005	0.001	0.001	2100
244C	value	2.57	0.715	2.15	0.027	0.012	0.344	0.248	0.301	0.059	0.002	0.034	0.071	0.031	0.017	0.086	244C
2440	Uc	0.03	0.007	0.02	0.001	0.001	0.003	0.003	0.003	0.001	0.001	0.002	0.004	0.001	0.002	0.003	2440
2470	value	3.13	0.99	1.29	0.099	0.0033	0.503	0.029	0.84	0.024	0.010	0.067	0.041	0.053	0.058	0.000	2470
2470	Uc	0.03	0.01	0.02	0.003	0.0007	0.007	0.001	0.01	0.001	0.001	0.002	0.002	0.003	0.002	0.0005	2470
2480	value	3.46	0.250	1.79	0.058	0.0042	0.714	0.057	0.122	0.001	0.193	0.111	0.015	0.039	0.030	0.038	248D
2400		0.02	0.002	0.02	0.002	0.0005	0.005	0.001	0.002	0.001	0.003	0.003	0.002	0.002	0.002	0.002	2400
	Uc	0.02	0.002	0.02	0.002	0.0005	0.000	0.001	0.002	0.001	0.000	0.000	0.002	0.002	0.002	0.002	
N°	% m/m	Sn	Sb	As	Pb	Bi	Zn	Se	Te	Со	W	Nb	Zr	La	N	Fe	N°
N°	% m/m value	0.02 Sn 0.110	0.002 Sb 0.079	As 0.078	Pb 0.013	Bi	0.005 Zn 0.025	0.001 Se	0.002 Te	0.001 Co 0.027	0.005 W 0.026	0.000 Nb 0.024	Zr 0.000	La	N 0.0050	Fe 93.0	N°
N° 243B	value U₀	Sn 0.110 0.002	0.002 Sb 0.079 0.002	As 0.078 0.003	Pb 0.013 0.001	Bi	Zn 0.025 0.002	0.001 Se	Te	0.001 Co 0.027 0.001	0.003 W 0.026 0.002	0.000 Nb 0.024 0.001	Zr 0.000 0.0005	La 0.000 0.0005	N 0.0050 0.0004	Fe 93.0	N° 243B
N° 243B	value U₅ value	0.02 Sn 0.110 0.002 0.175	0.002 Sb 0.079 0.002 0.004	As 0.078 0.003 0.043	Pb 0.013 0.001 0.003	Bi 0.000 0.000	Zn 0.025 0.002 0.027	Se 0.016 0.000	Te 0.000 0.000	0.001 Co 0.027 0.001 0.050	0.003 W 0.026 0.002 0.052	Nb 0.024 0.001 0.006	Zr 0.000 0.0005 0.037	La 0.000 0.0005 0.008	N 0.0050 0.0004	93.0 92.9	N° 243B
N° 243B 244C	% m/m value Uc value	0.02 Sn 0.110 0.002 0.175 0.003	0.002 Sb 0.079 0.002 0.004 0.001	As 0.078 0.003 0.043 0.002	Pb 0.013 0.001 0.003 0.001	0.000 Bi 0.000 0.000 0.0005	0.003 Zn 0.025 0.002 0.027 0.002	0.016 0.000	Te 0.000 0.000	0.001 Co 0.027 0.001 0.050 0.001	0.003 W 0.026 0.002 0.052 0.002	Nb 0.024 0.001 0.006 0.001	0.000 0.000 0.0005 0.037 0.002	La 0.000 0.0005 0.008 0.001	N 0.0050 0.0004	93.0 92.9	N° 243B 244C
N° 243B 244C	Value Value U _c Value U _c value	0.02 Sn 0.110 0.002 0.175 0.003 0.040	0.002 Sb 0.079 0.002 0.004 0.001 0.005	0.02 As 0.078 0.003 0.043 0.002 0.012	0.002 Pb 0.013 0.001 0.003 0.001 0.002	0.0000 Bi 0.000 0.0005 0.0007	0.005 Zn 0.025 0.002 0.027 0.002 0.018	0.001 Se 0.016 0.000	0.002 Te 0.000 0.000	0.001 Co 0.027 0.001 0.050 0.001 0.097	0.003 W 0.026 0.002 0.052 0.002 0.002	Nb 0.024 0.001 0.006 0.001 0.048	Zr 0.000 0.0005 0.037 0.002 0.009	La 0.000 0.0005 0.008 0.001 0.023	N 0.0050 0.0004	93.0 92.9 92.6	N° 243B 244C
N° 243B 244C 247C	% m/m value Uc value uc uc uc uc uc uc uc	0.02 Sn 0.110 0.002 0.175 0.003 0.040 0.001	0.002 Sb 0.079 0.002 0.004 0.001 0.005 0.001	As 0.078 0.003 0.043 0.002 0.012 0.001	Pb 0.013 0.001 0.003 0.001 0.001	0.0000 Bi 0.000 0.0005 0.007 0.002	0.005 Zn 0.025 0.002 0.027 0.002 0.018 0.002	0.001 Se 0.016 0.000 0.000	Te 0.000 0.000 0.000 0.000	0.001 CO 0.027 0.001 0.050 0.001 0.097 0.002	W 0.026 0.002 0.052 0.002 0.002	Nb 0.024 0.001 0.006 0.001 0.048 0.001	Zr 0.000 0.0005 0.037 0.002 0.009 0.001	La 0.000 0.0005 0.008 0.001 0.023 0.002	N 0.0050 0.0004	93.0 92.9 92.6	N° 243B 244C 247C
N° 243B 244C 247C	% m/m value Uc value Uc Uc Uc value Uc value Uc value Uc value Value Uc Value Uc Value Uc Value	0.02 Sn 0.110 0.002 0.175 0.003 0.040 0.001 0.018	0.002 Sb 0.079 0.002 0.004 0.001 0.005 0.001 0.001	0.02 As 0.078 0.003 0.043 0.002 0.012 0.001 0.021	0.002 Pb 0.013 0.001 0.003 0.001 0.002 0.011	Bi 0.000 0.000 0.000 0.0005 0.0007 0.002 0.003	0.002 Zn 0.025 0.002 0.002 0.018 0.002 0.010	0.001 Se 0.016 0.000 0.000	0.002 Te 0.000 0.000 0.007 0.005	0.007 0.001 0.001 0.001 0.007 0.002 0.009	W 0.026 0.002 0.052 0.002 0.002 0.002 0.002 0.002	Nb 0.024 0.001 0.006 0.001 0.048 0.001 0.048	Zr 0.000 0.0005 0.037 0.002 0.009 0.001 0.014	La 0.000 0.0005 0.008 0.001 0.023 0.002 0.010	N 0.0050 0.0004	93.0 92.9 92.6 93.0	N° 243B 244C 247C

Certified values: bold figures with uncertainty statement

Uncertified values: thin figures without uncertainty statement. For information only, they must not be used for validation or calibration.

Uncertainties: Uc, expanded combined uncertainty as the ± halfwidth interval except for certified zero values for which the + interval applies.

This page is valid with the corresponding Certificate only.

The CRM were certified on: 17.10.2003

The certification terminates on: 17.10.2018

CERTIFICATION

Principle and Traceability. Certification based on an interlaboratory experiment performed by various independent analytical methods was carried out in compliance with the ISO Guide 35 (1989). The results were traced to the above CRM 241-249 A-D set and standard primary substances. The methods were validated by matrix-matching CRMs.

Methods. Atomic Emission Spectrometry with spark and glow discharge excitation and X-ray Fluorescence Spectrometry were applied on a plane of the solid sample. Crushed certified portions of the samples were analyzed by Combustion - IR Molecular Absorption Spectrometry, Thermoevolution, Instrumental Neutron Activation Analysis and by solution methods which comprised Atomic Emission Spectrometry with Inductively Coupled Plasma excitation directly and with hydrides generation, Flame and Electro-Thermical Atomization Atomic Absorption Spectrometry, Molecular Absorption Spectrometry (Spectrophotometry) and Gravimetry.

Participating laboratories:

Analytical Laboratories Plzeň, Plzeň, CZ	Škoda Auto, Mladá Boleslav, CZ
ARL, Ecublens, Switzerland	Třinecké železárny, Třinec, CZ
ČKD Technical Laboratories, Praha, CZ	U.S.Steel, Košice, Slovakia
Institute of Chemical Technology, Praha, CZ	Vítkovice, Ostrava, CZ
LECO Instrumente Plzeň, Plzeň, CZ	ŽĎAS, Žďár nad Sázavou, CZ
Nová huť, Ostrava, CZ	Železárny a drátovny Bohumín, Bohumín, CZ Nuclear
Physics Institute, Řež u Prahy, CZ Želez	árny Hrádek, Hrádek u Rokycan, CZ
Škoda, Plzeň, CZ	

Evaluation. First the values of laboratory means were assessed technically to justify the deletion of possible outliers. Next the normal distribution of the laboratory means in each set was verified and the unrounded arithmetic averages and their standard deviations calculated.

Certified values are the averages of at least six accepted laboratory means the normal distributions of which were not rejected, rounded identically as their stated uncertainties.

Uncertainty was estimated with respect to ISO Guide to the Expression of Uncertainty in Measurement (1993) and Document EURACHEM, 1995 - Quantifying Uncertainty in Analytical Measurement as an expanded combined uncertainty. It is expressed as the \pm halfwidth interval except for certified zero values for which only the + halfwidth interval applies. The sources of the estimates of uncertainty were the standard deviation of an average of the laboratory means and a contribution of the combined inhomogeneities when found to be statistically significant. A coverage factor from 2.0 to 2.5 was applied by depending on the number of accepted laboratory means.

The uncertainty statement is given by two significant figures at most and holds only for analytical areas 4 mm or more in diameter.

Uncertified values are given when less than six accepted laboratory means were available and serve only as supplementary matrix information. They must not be used for calibration and validation.

Stability and storage. The CRM materials and certified constituents are stable over the entire period of validity. The samples must be stored in a non-corrosive environment.

Users instructions. The analytical surfaces of the CRMs must be prepared prior to analysis in the same way as the analyzed samples in agreement with the Instrument Operation Instructions.

Research Institute ČKD Na Harfë 7 190 02 Praha 9 CZECHOSLOVAKIA

CERTIFICATE

SPECTROMETRIC REFERENCE MATERIALS CKD

Alloyed Cast Iron "Niresist" (nodular) CRMs 250 through 254

The samples were unidirectionally chill-cast with controlled speed of molten metal.

The working surface is 39x39 mm, total height 20-25 mm. The usable height is 11 mm, i.e. the sample can be used upto 1 mm below the ledge, apparent on one of ist sides.

A minor porosity or dimple on the opposite, marked surface do not affect the use of the samples.

The certified values were computed from at least six accepted independent results, obtained by at least two different analytical techniques (including gravimetry, titration, MAS, AAS, ICP, NAA, coulometry, polarography, IR spectrometry and others). The analyses were carried out in leading Czechoslovak and foreign laboratories.

The results obtained by one method and/or less than six laboratories are given as informative values.

The uncertainty of certified value, based on material inhomogeneity, certification imprecision and estimate of residual systematic error is expressed in significant digits, according to ISO Guide 35-1985 (E) section 4.6.3.

The research, production and certification was directed by K.Bičovský.

Certified v	alues:
-------------	--------

	С	Mn	Si	Р	S	Cr	Mg
250	1,12	0,32	0,55	0,015	0,024	0,61	0,000
251	2,25	1,97	1,14	0,017	0,015	1,07	0,022
252	2,40	1,00	2,06	0,027	0,008	1,66	.0,125
253	2,45	0,74	2,28	0,060	0,008	2,92	0,038
254	2,78	4,50	2,60	0,043.	0,018	0,23	0,058
	Ni	Cu ·	Co	Мо	Nb	Ce	
250	17,7	0,22	0,085	0,005	0,00	0,00	
251	19,7	0,38	0,09	0,12	0,10	0,017	
252	22,0	0,13	0,105	0,005	0,00	0,00	
253	23,6	0,29	0,105	0,01	0,00	0,018	
254	14,3	0,11	0,06	0,41	0,26	0,039	

Informative values:

	Al	v	Ti	Pb	Sn
250	0,01	0,00	0,00	0,00	0,009
251	0,02	0,02	0,005	0,009	0,01
252	0,01	0,03	0,02	0,00	0,005
253	0,035	0,02	0,005	0,00	0,005
254	0,05	0,005	0,005	0,012	0,02

Praha, March 1989

Ing. Jaroslav V o l f Director ČKD PRAHA Research Institute

۶

Research Institute ČKD Na Harfé 7 190 02 Praha 9 CZECHOSLOVAKIA

INFORMATION SHEET

CAST IRON SPECTROMETRIC SETTING-UP SAMPLES

N,U

The samples were unidirectionally chill-cast with controlled speed of molten metal.

The working surface is 39 x 39 mm, total height 20 \div 25 mm. The usable height is 10 mm, i.e. the sample can be used upto 2 mm below the ledge apparent on one of its sides.

The casting temperature and the composition of the samples were carefully balanced to avoid any source of inhomogeneity and/or inappropriate structure. An extremely fine and uniform structure has been achieved by addition of niobium according to Czechoslovak patent AO 196 485 and further patent pending.

-			64	D	5	Cr	Ni	· Cu	Mo
-	C	Mn	0 65	0.2	0.01	0.8	1,15	0,8	0,7
꿝	3,6	1,1	2,3	0,4	0,08	0,7	0,55	0,5	1.1
-	292	47	ma	Zr	Sn	Sb	As	Pb	Bi
1	V	AL	11	0.00	0.12	0.03	0.05	0,025	0,008
M	0,27	0.07	0,09	0,02	0,05	0,02	0,04	0,01	0,015
-	ofer			117	2.5	B	Mg	Ce	La
111	Se	Te	Co	W	411.		0 07	0.04	0.02
M	0.005	0,007	0,05	0,12	0,02	0,02		-	-

Approximate composition

Praha, January 1988

Ing.Jaroslav Volf Director of Institute

) ČKD Technické laboratoře,a.s.

Na Harfě 7 190 02 Praha 9

INFORMATION SHEET

CAST IRON SPECTROMETRIC SETTING-UP SAMPLES

N,U

The samples were unidirectionally chill-cast with controlled speed of molten metal.

The working surface is 39 x 39 mm, total height $20 \div 25$ mm. The usable height is 10 mm, i.e. the sample can be used upto 2 mm below the ledge apparent on one of its sides.

The casting temperature and the composition of the samples were carefully balanced to avoid any source of inhomogeneity and/or inappropriate structure. An extremely fine and uniform structure has been achieved by addition of niobium according to Czechoslovak patent AO 196 485 and further patent pending.

	C	Mn	Si	P	S	Cr	Ni	Cu	Mo
N 2	3.6	1,1	2,6	0,2	0,01	0,8	1,1	0,8	0,65
U1	3.5	1,2	2,3	0,4	0,09	0,7	0,55	0,5	1,15
	V	AI	Ti	Zr	Sn	Sb	As	Pb	Bi
N 2	0,3	0,065	0,1	0,02	0,12	0,06	0,055	0,025	0,005
U 1	0,22	0,04	0,05	-	0,05	0,02	0,04	0,01	0,015
	Se	Te	Co	W	Zn	В	Mg	Ce	La
N 2	in (en)	0,00	0,05	0,13	0,02	0,02	0,06	0,035	0,005
U 1	0.015	0,01	0,01	0,01	0,015	0,008		20	

APPROXIMATE COMPOSITION

Praha, November 1993

Ing. Stanislav Hlaváč Managing Director

ČKD TECHNICKÉ LABORATOŘE, a.s.

CERTIFICATE

REFERENCE MATERIAL U2 CAST IRON FOR SPECTROMETRY

Designed. This material is a Reference Material (RM) by definition of the ISO-REMCO Guide 35 (1989).

It is designed primarily to check the state of the statistic regulation of continuously operating automatic spectrometers (setting-up). It is not designed for the validation and/or calibration of spectrometric measurements.

Manufacture and Technical Parameters. The RM U2 was chill-cast white on a massive copper block mold by a process identical with that used for CKD cast iron CRMs.

The samples are truncated pyramids with a base analytical surface (38x38mm), a minimum total height of 20 mm and a side ledge 11-13 mm high. The samples can be used till 1 mm of the ledge height remains. The certified portion of a sample thus extends 10-12 mm from the original analytical surface.

The samples are electro-spark marked on surfaces opposite to the analytical surfaces.

Shrinkage cavities and porosity which may appear in the uncertified portions of the samples due to the applied technology and the properties of the material do not affect the analytical performance of the certified portions.

Homogeneity. The between-sample and within-sample homogeneity were tested spectrometrically in compliance with the ISO-REMCO Guide 35 (1989).

Certification. Certification based on an interlaboratory experiment performed by various independent analytical methods was carried out in compliance with the ISO-REMCO Guide 35 (1989).

A minimum of 4 accepted laboratory means was required for the certified value.

Participating laboratories:

ČKD Technical Laboratories, PrahaŽĎAS, Žďár nad SázavouNuclear Physics Institute, Řež u PrahyŽelezárny a drátovny Bohumín, BohumínŠkoda, PlzeňŽelezárny Hrádek, Hrádek u RokycanŠkoda Auto, Mladá Boleslav

Uncertainty was estimated with respect to ISO Guide to the Expression of Uncertainty in Measurement (1993) and Document EURACHEM, 1995 - Quantifying Uncertainty in Analytical Measurement as an expanded combined uncertainty. It is expressed as the \pm halfwidth interval.

The sources of the estimates of uncertainty were the standard deviation of an average of the laboratory means and a contribution of the combined inhomogeneities when found to be statistically significant. A coverage factor of 2,3 was applied.

С	Mn	Si	Р	S	Ni	Cr	Cu
3,41 0,04	1,16 0,03	2,18 0,04	0,42 0,01	0,099 0,004	0,57 0,02	0,69 0,02	0,49 0,02
Mo	V	Ti	AI	в	Sn	Sb	As
1,15	0,21	0,052	0,025	0,008	0,052	0,022	0,030
0,03	0,01	0,003	0,003	0,001	0,002	0,002	0,004
Pb	Bi	Zn	Se	Te	Co	w	Nb
0,011	0,010	0,016	0,014	0,017	0,012	0,002	0,014
0,002	0,002	0,002		1	0,001	0,001	0,002

U2 - values and uncertainties in %m/m

Certified values: bold figures with uncertainty statement Uncertified values: thin figures without uncertainty statement

Uncertified values: min rigures without uncertainty statement

Uncertainties: expanded combined uncertainty as the ± halfwidth interval

Stability and storage. The RM materials and certified constituents are stable over the entire period of validity. The samples must be stored in a non-corrosive environment.

Users instructions. The analytical surfaces of the RMs must be prepared prior to analysis in the same way as the analyzed samples in agreement with the Instrument Operation Instructions.

Producer.

ČKD Technical Laboratories, Na Harfè 9, CZ - 190 02 Praha, Czech Republic Fax: + 420 2 66036578, E-mail: techlab@anet.cz Project Manager: Miroslav Gorný

Quality Management System ISO 9001 is in force with the producer. Production, testing and certification were carried out in compliance with the ISO-REMCO Guide 34 (2000).

Certified in Prague on 20.3.2000

Validity period: 15 years

Stanislav Hlaváč Director